Predictive Performance of the Winter-Tozer and Its Derivative Equations for Estimating Free Phenytoin Concentrations in Specific Patient Populations

Wendy Cheng, B.Sc.(Pharm.); Tony Kiang, B.Sc.(Pharm.), Ph.D., ACPR; Penny Bring, B.Sc.(Pharm.), ACPR, Pharm.D.; Mary H. H. Ensom, Pharm.D., FASHP, FCCP, FCSHP, FCAHS

Background

- Free phenytoin (PHT) concentration reflects efficacy and toxicity
- Low albumin concentration may affect total PHT
concentration and free fraction, but usually causes no change in free concentration
- Cannot estimate free PHT concentration from total PHT concentration when free fraction is unknown
- Winter-Tozer equation most commonly used to predict free PHT concentration
- Overall predictive performance of this equation is poor
- Other studies found bias and imprecision and
developed their own equations, which have not been validated in other studies

Methods

- Retrospective chart review at Vancouver General Hospital from Sept 2008 to Sept 2013
- Inclusion: > 18 years old, free PHT level
- Exclusion: level is not at steady state; patients on carbamazepine, phenobarbital, valproic acid, and hemodialysis
- Convenience sample size of ~ 50 patients per subgroup (Critical Care, General Medicine, Neurology)
- Mean predictive error (MPE) to assess bias and root mean square error (RMSE) to assess precision
- Primary objective:
- To assess the bias and precision of the Winter-Tozer equation and its derivatives in predicting free PHT concentrations in different patient subpopulations
- Secondary objective:
- To assess the effect of age, gender, eGFR, and total daily dose on the bias and precision of the WinterTozer equation and its derivatives
- To derive new equations that will better predict free PHT concentration

Exclusion Flow Chart

Figure 1: Bland-Altman Plots for All Patients, Critical Care, General Medicine, and Neurology

 Critical Care

Table 3: Bias and Precision for Age, Gender, and eGFR									
MPE ($\mu \mathrm{mol} / \mathrm{L}$) /RMSE (95\% CI)	Equation 1	Equation 2	Equation 3	Equation 4	MPE (μ moll $)$	Equation 1	Equation 2	Equation 3	Equation
$\begin{gathered} \leq 60 \text { years } \\ (n=53) \end{gathered}$	1.6 (1.2 to 2.0$)$	-0.3 (-0.8 to 0.2)	-0.5 (-0.9 to -0.1)	0.4 (0.0 to 0.8)	$\underset{\substack{(m L \text { min }) \\(n=6)}}{\text { eGFR }}<30$	(-2.4 to 0.2$)$	-2.5 (-5.0 to 0	3 (-3	-1.6 (-4.0 to 0.8)
	2.2 (1.10 0.3)	1.7	1.5 (-0.	1.6 (-0.3 to 3.5$)$		2.6 (-3.0 to 8.2$)$	3.8 (-13.5 $\left.\mathrm{t}^{2} 21.1\right)$	2.9 (-7.0 to 12.8)	(9.2 to 15.6)
$>60 \text { years }$$(n=80)$	1.8 (1.5 to 2.1)	-0.2-0.4 to 0.0)	-0.1 (-0.4 to 0.2)	0.5 (0.3 to 0.7)	$\begin{aligned} & 30-59 \\ & (n=27) \end{aligned}$	1.3 (0.8 to 1.8$)$	-0.5	-0.3	0.2 (-0.2 to 0.6)
	2.8 (1.3 to 4.3	1.4 (0.8to 2.0$)$	1.5 (0.9 to 2.1)	1.5 (0.9 to 2.1)		1.9 (-0.40 0.2$)$	1.2 (-0.1 to 0.5$)$	1.3 (-0.1 to 2.7)	1.1 (0.2 to 2.0$)$
$\underset{(n=71)}{\substack{\text { Male } \\ \hline}}$	1.7 (1.3 to 2.1$)$. $2(-0.6$ to 0.2$)$	-0.1 (-0.4 40.2 0.	0.5 (0.2 to 0.8$)$	$\begin{aligned} & 60-89 \\ & \left(\begin{array}{l} 54 \end{array}\right) \end{aligned}$	2.0 (1.7 ${ }^{\text {to } 2.3)}$	$-0.1(-0.5$ to 0.3$)$	0.0 (-0.4to 0.4)	0.7 (0.4to 1.0$)$
	2.3 (0.8 to 3.8)	2.3 (0.8 0 0.8)	1.3 (0.2 to 2.4)	1.5 (0.1 to 2.9$)$		2.4 (1.17 to 3.7)	1.3 (-0.5 to 3.1)	1.3 (0.1 to 2.5)	1.4 (0.3 0 0 2.5)
$\begin{aligned} & \text { Female } \\ & (n=62) \end{aligned}$	1.7 (1.400.0)	-0.2 (-0.5 to 0.1)	-0.4(-0.7 to -0.1)	0.5 (0.2 to 0.8)	$\begin{aligned} & \geq 90 \\ & (n=46) \end{aligned}$	3.1 (2.7 703.5)	0.1 (-0.1 to 0.3$)$	-0.6 (-0.9 to -0.3)	1.2 (0.9 to 1
	(0.810 3.6$)$	1.1 (0.2 to 2.0$)$	1.4 (0.5 to 2.3$)$	(0.6 to		(1.0to	1.0 (0.6 to 1	. $3(0.9$ to 1.	1.5 (0.8 8002.2$)$

Table 3 (continued): Bias and Precision for Total Daily Dose					
Dose (mg)	Analysis (95\% CI)	Equation 1	1 Equation 2	Equation 3	Equation 4
$\begin{gathered} <300 \\ (n=18) \end{gathered}$	MPE (($\mathrm{mol} / \mathrm{L}$)	1.7 (1.1to 2.3)	-0.2 (-0.5 to 0.1)	$-0.3(-0.8$ to 0.2))
	RMSE	2.1 (-1.2 to 5.4$)$	4) 0.7 (0.410 1.0$)$	1.2 (0.440 2.0$)$	1.0 (0.5 to 1.5)
$\begin{gathered} 300 \\ (n=53) \end{gathered}$	MPE ((moll)	L) 1.5 (1.0 to 2.0$)$	-0.6 (-1.1 to-0.1)	-0.6(-1.0 to -0.2)	0.2 (-0.3 to 0.7)
	RMSE	2.3 (0.6to 4.0$)$) $1.8(-1.0004 .6)$	1.6 (-0.1 to 3.3$)$	1.7 (-0.1 10.5 0.5)
$\begin{gathered} 301-499 \\ (n=43) \end{gathered}$	MPE ((moll ${ }^{\text {L }}$	L) 1.7 (1.3to 2.1$)$	1) -0.1 (-0.4 to 0.2$)$	-0.1(-0.4 to 0.2)	0.6 (0.3to 0.9)
	RMSE	2.0 (0.7 to 3.3)	0.9 (0.0 to 1.8$)$	0.9 (0.1to	18)
$\begin{aligned} & \geq 500 \\ & (n=19) \end{aligned}$	MPE ((moll)	L) 2.3 (1.7 to 2.9$)$. $0.2(-0.400 .8)$	0.3 (-0.3to 0.9)	5)
	RMSE	2.6 (-0.6 to 5.8)	8) 1.2 (-0.1 to 2.5$)$	1.3 (0.0 to 2.6)	1.5 (-0.2
Table 4: Bias and Precision of New Equations					
Predicted Free PHT $=\frac{\text { Measured Total PHT }}{(? \text { Albumin }+0.1)} \times 0.1$					
Analysi (95\% C		$\begin{aligned} & \text { Equation } \mathrm{X} \\ & 0.26^{\prime} \end{aligned}$	${ }^{\text {Equation }} \mathbf{Y}$	Equation Z	$\begin{aligned} & \text { Equation } \mathrm{W} \\ & { }^{2} .275^{\prime} \end{aligned}$
MPE ($\mu \mathrm{mol} / \mathrm{L})$ RMSE		3 (0.1 to 0.5)	0.1 (-0.1 10.30	-0.1 (-0.3 to 0.1)	0.0 (-0.2 10.0 .2$)$
		. 3 (0.4 to 2.2)	1.3 (0.3 to 2.3$)$	1.3 (0.3 to 2.3$)$	1.3 (0.2 to
Figure 2: Bland-Altman Plot of New Equations					

Table 5: Dose Changes Made From Predictive Equations

Equation	Actual	1	2	3	4	X	Y	z	w
$>8 \mu \mathrm{~mol} / \mathrm{L}$	18	43	16	15	26	23	20	16	19
Changes to Dose (n)		25	2	3	8	5	2	2	1
< 4 mmol/	47	21	48	49	36	38	39	44	43
Changes to Dose (n)		26	1	2	11	9	8	3	4
Total (n , \%)		$\begin{gathered} 51 \\ (38) \end{gathered}$	$\begin{gathered} 3 \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (4) \end{gathered}$	$\begin{gathered} 19 \\ (14) \end{gathered}$	$\begin{gathered} 14 \\ (11) \end{gathered}$	$\begin{aligned} & 10 \\ & (8) \end{aligned}$	$\begin{gathered} 5 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (4) \\ \hline \end{gathered}$

Results

- The Winter-Tozer equation tended to overpredict
- The Kane et al. equations (Equation 2 and 3) tended to underpredict
- The Anderson et al. equation generally overpredicted - In general, there was more bias and imprecision associated with the Winter-Tozer equation than the other equations

Conclusion

- The overall predictive performance of the Winter-Tozer equation in this population was poor
We developed new derivative equations with reduced bias

Vancouver CoastalHealth

