Predictive Performance of the Winter-Tozer and Its Derivative Equations for Estimating Free Phenytoin Concentrations in Neurology Patients on Concurrent Enzyme Inducers (Phenobarbital, Carbamazepine) and Inhibitors (Valproic Acid)
Catharina Yih, B.Sc.(Pharm.); Tony Kiang, B.Sc.(Pharm.), Ph.D., ACPR; Greg Egan, B.Sc.(Pharm.), ACPR, Pharm.D.; Penny Bring, B.Sc.(Pharm.), ACPR, Pharm.D.; Mary H. H. Ensom, B.S.(Pharm.), Pharm.D., FASHP, FCCP, FCSHP, FCAHS

MPE (Imollt)	Equation 1	Equation 2	Equation 3	Equation 4	Equation 5		Equation 6
$\begin{gathered} \text { CYP } \\ \text { interaction } \\ (n=19) \end{gathered}$	0.8 (0.000 1.6)		$\begin{aligned} & 1.0)-1.4(-3.210 .04) \\ & (==13) \end{aligned}$	-1.3 (-2.3 (0-0.3)	$-1.3(-2.360 .0 .3)$	0.3) -1.1	-1.1-2
	2.0 (-0.210 4.2$)$	$4.2 \begin{gathered} (-14.8 \text { to } 23.2 \\ (n=13) \end{gathered}$		$2.5(-4.509 .5)$	2.6 (-5.2to 10.4		2.4
$\begin{gathered} \text { No CYP } \\ \text { interaction } \\ (n=25) \end{gathered}$	1.6 (0.9 0 o 2.3$)$		$\text { 0.3) } \begin{gathered} 0.4(-.3 .301 .1) \\ (0=171) \end{gathered}$	-0.6 (-1.2000.0)	-1.2(-2.210-0.2)		-0.3-0.96
	2.4 (-1.10 0.9$)$		$\text { 8) } \begin{aligned} & 1.6(0.40 .40 .8) \\ & (0=17) \end{aligned}$	1.6 (-0.70 3.9$)$	2.8 (-6.600 122		1.5
	1.3 (0.70 0.9$)$	$\begin{gathered} -1.0(-2.2 \text { to } 0.2) \\ (n=4) \end{gathered}$	$1.2) \quad \begin{gathered} 0.3(0.0 .6001 .2) \\ (n=4) \end{gathered}$	-0.5 -1.3 (00.3)	-0.9(-1.8600.0)		-0.3 (-1.1 10
	1.5 (0.010 3.0$)$	$1.4 \underset{(n=4)}{(-0.9 \text { to } 3.7)}$		1.0 (0.2 10.8$)$	$1.3(-0.400 .0)$		0.8 (0)
$\underset{(n=13)}{300 \mathrm{mg}}$	$0.4(-0.610 .4)$	$\begin{aligned} & -3.3(-5.9 \text { ato } 0.0 .7(n=8) \\ & (n) \end{aligned}$	$\text { D.7) }-2.1\left(\begin{array}{c} (-4,40.0) \\ (==8) \end{array}\right.$	-1.5-(-2.8t-0.0.)	-1.6 (-3.0to-0.2)		-1.3-2.660
	1.8 (-0.5004.1)	$\begin{gathered} 4.8(-23.0 \text { to } 32.6 \\ (n=8) \end{gathered}$	2.6) $3.8\left(\begin{array}{c}(14.6(10202) \\ (n=8) \\ (14) \\ \hline\end{array}\right.$	2.8 (-7.000 12.6$)$	3.0 (-.5.50 14.1		2.6 (-6.00
$301-499 \mathrm{mg}$$(\mathrm{n}=17)$	1.3 (0.40 2.2$)$	$\begin{gathered} -1.3(2.5 \text { to }-0.1 \\ (n=13) \end{gathered}$	$\text { .1) } \begin{gathered} 0.0(-1.4 \text { to } 1.4) \\ (\eta=13) \end{gathered}$	-0.9 (-1.70 -0.1)	-1.7-(-3.10-0.3)		-0.6 (-1.400.2)
	2.3 (-0.30 4.9$)$	$\begin{gathered} 1.1 \begin{array}{c} (-8.2 \text { to } 10.4) \\ (n=13) \end{array} \end{gathered}$	$\text { p.4) } \begin{gathered} 1.0(-6.5 .308 .3) \\ (\pi=13) \end{gathered}$	1.8 (-2.606.2)	3.3 (-1.0.6017.2)		1.7
$\begin{gathered} 2500 \mathrm{mg} \\ (\mathrm{n}=9) \end{gathered}$	2.4 (1.110.7.7)	$\underset{(\substack{(-2.1 \text { to } \\(n=5)}}{-0.3 .3}$	$0.3) \quad \begin{aligned} & 0.9(-0.260 .0) \\ & (0=5) \end{aligned}$	-0.3 (-1.300.7)	0.0 (-0.9to.9)		0.0 (-1.060
	3.0 (-5.86 011.8)	$\underset{\substack{1.5(0.3 .40 .3) \\(0=5)}}{(t)}$		$1.5(-0.103 .1)$	1.3 (0.30 2.3$)$		1.5
$\begin{aligned} & \text { eGFR } \\ & 30-59 \\ & \text { mLmin } \\ & (n=3) \end{aligned}$	$1.4(0.810 .0 .0)$	NA	NA	-0.9 (-2.100.3)	$-1.5(-4.210 .12)$		-0.6 (-1.610 0.4)
	1.5 (-0.40 3.4$)$	NA	NA	$1.2(-1.6104 .0)$	2.4 (-9.0010 13.8	3.8) 0.9	0.9 -0.7
$\begin{gathered} 60-89 \\ \substack{60.8 \mathrm{~min} \\ (n=8)} \end{gathered}$	0.8 (0.1to 1.5$)$	$-1.0 \begin{gathered} (-1.9 .90 \\ (n=4) \\ \hline-0.1 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1) \\ & 0.3\binom{(0.70 .70 .10)}{(n=4)} \end{aligned}$	-0.8(-1.40-0.2)	-0.5-1.06to.0)		-0.6-1.210
	1.20 (0.20 2.2		$\text { .8) } \quad 0.9 \begin{aligned} & (0.0 \text { oto } 1.8) \\ & (0=4) \end{aligned}$. 20.5101 .9	0.8 (0.20 0.4$)$		1.0 (0.50 0 1.5)
$>90 \mathrm{~mL} / \mathrm{min}$ ($\mathrm{n}=33$)	1.3 (0.6 to 2.0$)$	$\begin{gathered} -1.9 \underset{(-3.0 \text { to }-0.8}{(n=25)} \end{gathered}$	$\begin{aligned} & 0.8) \\ & -0.6(-1.710 .5) \\ & (n=25) \end{aligned}$	-0.9 (-1.610-0.2)	-1.4(-2.360-0.9	-0.5) -0.7	-0.7(-1.400.0)
	2.5 (-.0.30 5.3)	$\begin{gathered} 3.3\left(\begin{array}{c} -7.0 .0 .0 .10 .6) \\ (0=25) \\ \hline \end{array}\right) \end{gathered}$	$\text { 3.6) } \quad \begin{aligned} & 2.8(4.26 .40 .8) \\ & (n=25) \end{aligned}$	2.3 (-2.2t0.8)	$3.00-5.31011 .3$	11.3) 2.1	2.1 (-1.906.1)
Table 5: Potential for Inappropriate Dose Changes from Predictive Equations							
		Actual	2 (n=30)	3 ($n=30$)	4	5	- 6
< 4 umoll (n)		13	14	6	12	13	12
$4-8 \mu \mathrm{mol/L}$ (n)		16	$23 \quad 11$	15	23	22	23
$>8 \mu \mathrm{~m}$	moll (n)	15	16	9	9	9	9
Potential for inappropriate change in dose ($n, \%$)			1 (25) 14 (47)	6 (20)	11 (25) 12	12 (27)	7) 11 (25)
Results							
-The Winter-Tozer equation tended to overpredict -The May et al., Kane et al. (Equations 4 \& 5), Haidukewych et al., and Cheng et al. equations tended to underpredict							
Limitations							
- eGFR used instead of CrCl for Equation 5 - Free PHT assay at VGH changed Feb 27, 2012 - 18 concentrations after this date, 26 concentrations before - Small sample size - Interacting medication not at steady state							
Conc/usions							
- Overall predictive performance of currently developed equations poor - In general, the Cheng et al. equation was the most precise; the Haidukewych et al. equation was the least biased - Larger sample sizes required to derive new equations with reduced bias and/or increased precision							

Better health. Best in health care.

